Alpha-synuclein is a 140 amino acids' protein, widely expressed in the nervous system of different vertebrates and closely related with several neurodegenerative disorders. Although its pathological involvement is reported from long time, its physiological function and its role in neurodegeneration is not yet clear. Disposing of two new monoclonal antibodies, able to detect alpha-synuclein in different compartments of the neurons, the aim of this study is to create an anatomical map of the protein's distribution in the central nervous system of C57 BL\6J mouse, the mouse strain most sensitive to 1-methyl 4-phenyl 1,2,3,6-tetrahydro pyridine neurotoxicity and widely used to apply toxic models of Parkinson disease. The two monoclonal antibodies confirm their ability in visualizing the protein in distinct compartments of the neurons, since 2E3 detects alpha-synuclein in the nerve cells' fibers, whereas 3D5 preferentially in the neuronal nuclei. Both antibodies, instead, are able to show alpha-synuclein at the synaptic terminals. The protein is ubiquitary distributed in the brain, as well as in the spinal cord, but its sub-cellular localization differs markedly in the various regions of the central nervous system. Among alpha-synuclein immunoreactive territories, we describe a particular organization in habenular nuclei, dorsal hippocampus, olfactory bulbs, brain stem nuclei and cerebellar cortex. This preliminary immunohistochemical study, provides the first anatomical map of the alpha-synuclein distribution in the C57 BL\6J mouse CNS and suggests that alpha-synuclein is differentially localized, at sub-cellular level, in different types of neurons and that, therefore, it can plays a specific role for each neuronal subtype. Our study in healthy C57 BL/6J mice represents a starting point to analyze the variations in the overall distribution of alpha-synuclein in mouse models of Parkinson disease.
Copyright © 2010 Elsevier B.V. All rights reserved.