Background: HIV-1 group O (HIV-O) is characterized by a high genetic divergence from HIV-1 group M viruses. Little is known about the therapeutic impact of this diversity. The aim of this study was to assess in a large series of samples (1) the genotypic impact of natural polymorphism of the HIV-O reverse transcriptase and protease genes; and (2) the predictive value of resistance interpretation algorithms developed for HIV-1 group M when used for highly mutated HIV-O viruses.
Methods: Sixty-eight antiretroviral-naive and 9 highly antiretroviral-experienced HIV-O-infected patients were included. The viruses were sequenced and resistance-associated mutations were identified using 3 different algorithms (Agence Nationale de Recherches sur le SIDA et les hépatites virales, Rega, Stanford).
Results: All HIV-O samples naturally exhibited the A98G and V179E resistance mutations in the reverse transcriptase region; 54% of samples presented the Y181C mutation, conferring resistance to nonnucleoside reverse transcriptase inhibitors. Twelve minor resistance mutations, present in more than 75% of the protease sequences, led to the different algorithms giving discrepant results for nelfinavir and saquinavir susceptibility. A marked virological response was observed in 8 of the 9 antiretroviral-experienced patients, despite the prediction of limited activity of the combination for 5 to 8 patients according to the algorithm used.
Conclusions: The high level of natural polymorphism in HIV-O genes, and the important discrepancies between genotypic resistance interpretation and the virological response, emphasize the need for resistance algorithm rules better adapted to HIV-O.