Current efforts to improve the effectiveness of vaccines include incorporating antimicrobial peptides mixed with a virus. The antimicrobial peptide, epinecidin (Epi)-1, was reported to have an antiviral function, and an Epi-1-based inactivated vaccine was postulated as a model and discussed. In this report, we demonstrated modulation of immune responses by Epi-1 and an Epi-1-based Japanese encephalitis virus (JEV)-inactivated vaccine against JEV infection in mice. Under in vitro conditions, Epi-1 prevented JEV infection-mediated loss of cell viability in BHK-21 cells. When Epi-1 and JEV were co-injected into mice and mice were re-challenged with JEV after 14 days, all mice survived. In addition, Epi-1 modulated the expressions of immune-responsive genes like interleukin (IL)-6, IL-10, MCP-1, tumor necrosis factor-α, interferon-γ and IL-12, and elevated the levels of anti-JEV-neutralizing antibodies in the serum. The presence of Epi-1 suppressed the multiplication of JEV in brain sections at 4 days after an injection. Mice immunized with the developed vaccine showed complete survival against JEV infection, and it was superior to the traditional formalin-based JEV-inactivated vaccine. This study demonstrates the use of Epi-1 to develop an inactivated vaccine can provide guidelines for the future design of Epi-1-virus formulations for various in vivo applications.
Copyright © 2011 Elsevier Ltd. All rights reserved.