Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism

Chem Biol. 2011 Feb 25;18(2):210-21. doi: 10.1016/j.chembiol.2010.12.010.

Abstract

DnaK is a molecular chaperone responsible for multiple aspects of bacterial proteostasis. The intrinsically slow ATPase activity of DnaK is stimulated by its co-chaperone, DnaJ, and these proteins often work in concert. To identify inhibitors we screened plant-derived extracts against a reconstituted mixture of DnaK and DnaJ. This approach resulted in the identification of flavonoids, including myricetin, which inhibited activity by up to 75%. Interestingly, myricetin prevented DnaJ-mediated stimulation of ATPase activity, with minimal impact on either DnaK's intrinsic turnover rate or its stimulation by another co-chaperone, GrpE. Using NMR, we found that myricetin binds DnaK at an unanticipated site between the IB and IIB subdomains and that it allosterically blocked binding of DnaK to DnaJ. Together, these results highlight a "gray box" screening approach, which might facilitate the identification of inhibitors of other protein-protein interactions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Allosteric Regulation / drug effects
  • Drug Evaluation, Preclinical
  • Escherichia coli Proteins / antagonists & inhibitors*
  • Escherichia coli Proteins / chemistry
  • Escherichia coli Proteins / metabolism
  • Flavonoids / chemistry
  • Flavonoids / metabolism
  • Flavonoids / pharmacology*
  • HSP40 Heat-Shock Proteins / antagonists & inhibitors*
  • HSP40 Heat-Shock Proteins / chemistry
  • HSP40 Heat-Shock Proteins / metabolism
  • HSP70 Heat-Shock Proteins / antagonists & inhibitors*
  • HSP70 Heat-Shock Proteins / chemistry
  • HSP70 Heat-Shock Proteins / metabolism
  • Models, Molecular
  • Plant Extracts / chemistry
  • Plant Extracts / metabolism
  • Plant Extracts / pharmacology
  • Protein Structure, Tertiary
  • Structure-Activity Relationship

Substances

  • Escherichia coli Proteins
  • Flavonoids
  • HSP40 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins
  • Plant Extracts
  • myricetin
  • Adenosine Triphosphate
  • dnaK protein, E coli