Background: Press-fit fixation of hamstring tendon autografts for anterior cruciate ligament reconstruction is an interesting technique because no hardware is necessary. This study compares the biomechanical properties of press-fit fixations to an interference screw fixation.
Methods: Twenty-eight human cadaveric knees were used for hamstring tendon explantation. An additional bone block was harvested from the tibia. We used 28 porcine femora for graft fixation. Constructs were cyclically stretched and then loaded until failure. Maximum load to failure, stiffness and elongation during failure testing and cyclic loading were investigated.
Results: The maximum load to failure was 970±83 N for the press-fit tape fixation (T), 572±151 N for the bone bridge fixation (TS), 544±109 N for the interference screw fixation (I), 402±77 N for the press-fit suture fixation (S) and 290±74 N for the bone block fixation technique (F). The T fixation had a significantly better maximum load to failure compared to all other techniques (p<0.001).
Conclusion: This study demonstrates that a tibial press-fit technique which uses an additional bone block has better maximum load to failure results compared to a simple interference screw fixation.