Infection with virulent biotypes of feline coronavirus (FCoV) can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. In this study we demonstrate the ability of small interfering RNA (siRNA) mediated RNA interference (RNAi) to inhibit the replication of virulent FCoV strain FIPV WSU 79-1146 in an immortalised feline cell line. A panel of eight synthetic siRNAs targeting four different regions of the FCoV genome were tested for antiviral effects. Efficacy was determined by qRT-PCR of intracellular viral genomic and messenger RNA, TCID50 infectivity assay of extracellular virus, and direct IFA for viral protein expression. All siRNAs demonstrated an inhibitory effect on viral replication in vitro. The two most effective siRNAs, targeting the untranslated 5' leader sequence (L2) and the nucleocapsid gene (N1), resulted in a >95% reduction in extracellular viral titre. Further characterisation of these two siRNAs demonstrated their efficacy when used at low concentrations and in cells challenged with high viral loads. Taken together these findings provide important information for the potential therapeutic application of RNAi in treating FIP.
Copyright © 2011 Elsevier B.V. All rights reserved.