Tuning of the human neocortex to the temporal dynamics of attended events

J Neurosci. 2011 Mar 2;31(9):3176-85. doi: 10.1523/JNEUROSCI.4518-10.2011.

Abstract

Previous studies raise the hypothesis that attentional bias in the phase of neocortical excitability fluctuations (oscillations) represents a fundamental mechanism for tuning the brain to the temporal dynamics of task-relevant event patterns. To evaluate this hypothesis, we recorded intracranial electrocortical activity in human epilepsy patients while they performed an audiovisual stream selection task. Consistent with our hypothesis, (1) attentional modulation of oscillatory entrainment operates in a distinct network of areas including auditory, visual, posterior parietal, inferior motor, inferior frontal and superior midline frontal cortex, (2) the degree of oscillatory entrainment depends on the predictability of the stimulus stream, and (3) the attentional phase shift of entrained oscillation cooccurs with classical attentional effects observed on phase-locked evoked activity in sensory-specific areas but seems to operate on entrained low-frequency oscillations that cannot be explained by sensory activity evoked at the rate of stimulation. Thus, attentional entrainment appears to tune a network of brain areas to the temporal dynamics of behaviorally relevant event streams, contributing to its perceptual and behavioral selection.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Acoustic Stimulation / methods*
  • Attention / physiology*
  • Electroencephalography / methods
  • Female
  • Humans
  • Neocortex / physiology*
  • Photic Stimulation / methods*
  • Psychomotor Performance / physiology*
  • Time Factors