The Shu complex, which contains RAD51 paralogues, is involved in the decision between homologous recombination and error-prone repair. We discovered a link to ribosomal DNA (rDNA) recombination when we found an interaction between one member of the Shu complex, SHU1, and UAF30, a component of the upstream activating factor complex (UAF), which regulates rDNA transcription. In the absence of Uaf30, rDNA copy number increases, and this increase depends on several functional subunits of the Shu complex. Furthermore, in the absence of Uaf30, we find that Shu1 and Srs2, an anti-recombinase DNA helicase with which the Shu complex physically interacts, act in the same pathway regulating rDNA recombination. In addition, Shu1 modulates Srs2 recruitment to both induced and spontaneous foci correlating with a decrease in Rad51 foci, demonstrating that the Shu complex is an important regulator of Srs2 activity. Last, we show that Shu1 regulation of Srs2 to double-strand breaks is not restricted to the rDNA, indicating a more general function for the Shu complex in the regulation of Srs2. We propose that the Shu complex shifts the balance of repair toward Rad51 filament stabilization by inhibiting the disassembly reaction of Srs2.