Cyclin-dependent kinase 5 promotes pancreatic β-cell survival via Fak-Akt signaling pathways

Diabetes. 2011 Apr;60(4):1186-97. doi: 10.2337/db10-1048. Epub 2011 Mar 4.

Abstract

Objective: Cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1-like 1 has recently been linked to type 2 diabetes by genome-wide association studies. While CDK5 and its regulatory protein p35 are both expressed and display enzymatic activity in pancreatic β-cells, their precise role in the β-cell remains unknown. Because type 2 diabetes is characterized by a deficit in β-cell mass and increased β-cell apoptosis, we investigated the role of CDK5 in β-cell survival.

Research design and methods: We used INS 832/13 cells, rat islets isolated from wild-type or human islet amyloid polypeptide (h-IAPP) transgenic rats, and pancreatic tissue from rats and humans with and without type 2 diabetes and investigated the effect of CDK5/p35 inhibition (by small interfering RNA or by chemical inhibition) as well as CDK5/p35 overexpression on β-cell vulnerability to apoptosis.

Results: CDK5 inhibition led to increased β-cell apoptosis. To identify the mechanisms involved, we examined the phosphorylation state of focal adhesion kinase (Fak)(Ser732), a known target of CDK5. Following CDK5 inhibition, the phosphorylation of Fak(Ser732) decreased with resulting attenuation of phosphatidylinositol 3-kinase (PI3K)/Akt survival pathway. Conversely, CDK5 overexpression increased Fak(Ser732) phosphorylation and protected β-cells against apoptosis induced by the inhibition of the β-1 integrin signaling pathway. Also, Fak(Ser732) phosphorylation was less abundant in β-cells in both h-IAPP transgenic rats and humans with type 2 diabetes.

Conclusions: This study shows that by regulating Fak phosphorylation and subsequently PI3K/Akt survival pathway, CDK5 plays a previously unrecognized role in promoting β-cell survival.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Apoptosis / genetics
  • Blotting, Western
  • Cell Line
  • Cell Survival / drug effects
  • Cell Survival / genetics
  • Cyclin-Dependent Kinase 5 / genetics
  • Cyclin-Dependent Kinase 5 / metabolism*
  • Diabetes Mellitus, Type 2 / enzymology
  • Diabetes Mellitus, Type 2 / metabolism
  • Focal Adhesion Protein-Tyrosine Kinases / genetics
  • Focal Adhesion Protein-Tyrosine Kinases / metabolism*
  • Humans
  • In Vitro Techniques
  • Insulin-Secreting Cells / cytology*
  • Insulin-Secreting Cells / drug effects
  • Insulin-Secreting Cells / metabolism*
  • Islet Amyloid Polypeptide / genetics
  • Islet Amyloid Polypeptide / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA, Small Interfering
  • Rats
  • Rats, Transgenic
  • Signal Transduction / drug effects
  • Signal Transduction / genetics

Substances

  • Islet Amyloid Polypeptide
  • RNA, Small Interfering
  • Focal Adhesion Protein-Tyrosine Kinases
  • Cyclin-Dependent Kinase 5
  • Proto-Oncogene Proteins c-akt