Purpose: Polyelectrolyte complex nanoparticles are a promising vehicle for siRNA delivery but suffer from low stability under physiological conditions. An effective stabilization method is essential for the success of polycationic nanoparticle-mediated siRNA delivery. In this study, sodium triphosphate (TPP), an ionic crosslinking agent, is used to stabilize siRNA-containing nanoparticles by co-condensation.
Methods: siRNA and TPP were co-encapsulated into a block copolymer, poly(ethylene glycol)-b-polyphosphoramidate (PEG-b-PPA), to form ternary nanoparticles. Physicochemical characterization was performed by dynamic light scattering and gel electrophoresis. Gene silencing efficiency in cell lines was assessed by dual luciferase assay system.
Results: The PEG-b-PPA/siRNA/TPP ternary nanoparticles exhibited high uniformity with smaller size (80-100 nm) compared with PEG-b-PPA/siRNA nanoparticles and showed increased stability in physiological ionic strength and serum-containing medium, due to the stabilization effect from ionic crosslinks between negatively charged TPP and cationic PPA segment. Transfection and gene silencing efficiency of the TPP-crosslinked nanoparticles were markedly improved over PEG-b-PPA/siRNA complexes in serum-containing medium. No significant difference in cell viability was observed between nanoparticles prepared with and without TPP co-condensation.
Conclusions: These results demonstrated the effectiveness of TPP co-condensation in compacting polycation/siRNA nanoparticles, improving nanoparticle stability and enhancing the transfection and knockdown efficiency in serum-containing medium.