Purpose: Humans can reduce inorganic nitrate (NO(3)(-)) to nitrite (NO(2)(-)), nitric oxide (NO), and other bioactive nitrogen oxides. The purpose of this study was to test the hypothesis that a single dose of inorganic nitrate before exercise might enhance the tolerance of endurance athletes to high intensity exercise.
Methods: Eleven cyclists (age = 34.3 ± 4.8 yr, VO(2peak) = 65.1 ± 6.2 mL·kg(-1)·min(-1)) participated in this randomized, double-blind, crossover study. Subjects received dietary supplementation with nitrate (NaNO(3) 10 mg·kg(-1) of body mass) or a placebo (NaCl) 3 h before exercise. They then performed a cycle ergometer test that consisted of four 6-min submaximal workloads, corresponding to 2.0, 2.5, 3.0, and 3.5 W·kg(-1) of body mass, interspersed with 3 min of passive recovery. After a 5-min recovery period, subjects performed one incremental exercise test until exhaustion.
Results: Plasma nitrate and nitrite were significantly higher (P < 0.05) 3 h after supplementation (nitrate = 250 ± 80 μM, nitrite = 2313 ± 157 nM) than after the placebo (nitrate = 29 ± 8 μM, nitrite = 1998 ± 206 nM) at resting conditions. Nitrate supplementation significantly reduced VO(2peak)(nitrate = 4.64 ± 0.35 L·min(-1), placebo = 4.82 ± 0.33 L·min(-1), P = 0.010) and the ratio between VO(2) and power at maximal intensity (nitrate = 11.2 ± 1.1 mL·min(-1)·W(-1), placebo = 11.8 ± 1.1 mL·min(-1)·W(-1), P = 0.031). This reduction of VO(2) occurred without changes in the time to exhaustion (nitrate = 416 ± 32 s, placebo = 409 ± 27 s) or in the maximal power (nitrate = 416 ± 29 W, placebo = 410 ± 28 W).
Conclusions: A single oral dose of inorganic nitrate acutely reduces VO(2peak)without compromising the maximal exercise performance.