Background: Ambulation impairment is a major component of physical disability in multiple sclerosis (MS) and a major target of rehabilitation programs. Outcome measures commonly used to evaluate walking capacities suffer from several limitations.
Objectives: To define and validate a new test that would overcome the limitations of current gait evaluations in MS and ultimately better correlate with the maximum walking distance (MWD).
Methods: The authors developed the Timed 100-Meter Walk Test (T100MW), which was compared with the Timed 25-Foot Walk Test (T25FW). For the T100MW, the subject is invited to walk 100 m as fast as he/she can. In MS patients and healthy control volunteers, the authors measured the test-retest and interrater intraclass correlation coefficient. Spearman rank correlations were obtained between the T25FW, the T100MW, the Expanded Disability Status Scale (EDSS), and the MWD. The coefficient of variation, Bland-Altman plots, the coefficient of determination, and the area under the receiver operator characteristic curve were measured. The mean walking speed (MWS) was compared between the 2 tests.
Results: A total of 141 MS patients and 104 healthy control volunteers were assessed. Minor differences favoring the T100MW over the T25FW were observed. Interestingly, the authors demonstrated a paradoxically higher MWS on a long (T100MW) rather than on a short distance walk test (T25FW).
Conclusion: The T25FW and T100MW displayed subtle differences of reproducibility, variability, and correlation with MWD favoring the T100MW. The maximum walking speed of MS patients may be poorly estimated by the T25FW since MS patients were shown to walk faster over a longer distance.