We have succeeded in synthesizing m-carborane-based chiral NBN-pincer ligands, 1,7-bis(oxazolinyl)-1,7-dicarba-closo-dodecaborane (Carbox) (7-9). The combination of bis(hydroxyamides) and 3 equiv of diethylaminosulfur trifluoride (DAST) is a key step for cyclization to form oxazoline rings in excellent yields. X-ray crystal structures of these ligands confirmed three donor sites, one central B and two flanking N atoms in fixed positions. The electrophilic halogenation of the Carbox pincer ligands with iodine and a catalytic amount of Lewis acid led to ring-opening of the oxazolines and afforded bis(haloamides) (13 and 14). The air- and moisture-stable Carbox pincer complexes of rhodium(III), nickel(II), and palladium(II) were synthesized by the oxidative addition of RhCl(3)·3H(2)O, Ni(COD)(2), and Pd(CH(3)CN)(4)[BF(4)](2) to the Carbox pincer ligands (7-9), respectively. The catalytic activity of the rhodium(III) complexes (18-20) was examined for the asymmetric conjugate reduction of α,β-unsaturated esters and reductive aldol reaction. Among these catalysts, [(S,S)-Carbox-iPr]Rh(OAc)(2)·H(2)O (18) showed the highest enantioselective catalytic ability for both asymmetric conjugate reduction and reductive aldol reaction.
© 2011 American Chemical Society