Pre-erythrocytic immunity to Plasmodium falciparum malaria is likely to be mediated by T-cell recognition of malaria epitopes presented on infected host cells via class I and II major histocompatibility complex (MHC) antigens. To test for associations of human leukocyte antigen (HLA) alleles with disease severity, we performed high-resolution typing of HLA class I and II loci and compared the distributions of alleles of HLA-A, -B, -C and -DRB1 loci in 359 Malian children of Dogon ethnicity with uncomplicated or severe malaria. We observed that alleles A*30:01 and A*33:01 had higher frequency in the group of patients with cerebral disease compared to patients with uncomplicated disease [A*30:01: gf = 0.2031 vs gf = 0.1064, odds ratio (OR) = 3.17, P = 0.004, confidence interval (CI) (1.94-5.19)] and [A*33:01: gf = 0.0781 vs gf = 0.0266, 4.21, P = 0.005, CI (1.89-9.84)], respectively. The A*30:01 and A*33:01 alleles share some sequence motifs and A*30:01 appears to have a unique peptide binding repertoire compared to other A*30 group alleles. Computer algorithms predicted malaria peptides with strong binding affinity for HLA-A*30:01 and HLA-A*33:01 but not to closely related alleles. In conclusion, we identified A*30:01 and A*33:01 as potential susceptibility factors for cerebral malaria, providing further evidence that polymorphism of MHC genes results in altered malaria susceptibility.
© 2011 John Wiley & Sons A/S.