Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries

Phys Chem Chem Phys. 2011 May 7;13(17):7660-5. doi: 10.1039/c0cp02477e. Epub 2011 Mar 30.

Abstract

A functionalized graphene sheet-sulfur (FGSS) nanocomposite was synthesized as the cathode material for lithium-sulfur batteries. The structure has a layer of functionalized graphene sheets/stacks (FGS) and a layer of sulfur nanoparticles creating a three-dimensional sandwich-type architecture. This unique FGSS nanoscale layered composite has a high loading (70 wt%) of active material (S), a high tap density of ∼0.92 g cm(-3), and a reversible capacity of ∼505 mAh g(-1) (∼464 mAh cm(-3)) at a current density of 1680 mA g(-1) (1C). When coated with a thin layer of cation exchange Nafion film, the migration of dissolved polysulfide anions from the FGSS nanocomposite was effectively reduced, leading to a good cycling stability of 75% capacity retention over 100 cycles. This sandwich-structured composite conceptually provides a new strategy for designing electrodes in energy storage applications.