Objectives: To apply a three-dimensional geometric model to various endoscopic endonasal approaches to analyze the bony anatomy of this area, quantify preoperatively bone removal, and optimize surgical planning.
Methods: Investigators dissected 18 human cadaveric heads at the Laboratory of Surgical NeuroAnatomy (LSNA) of the University of Barcelona (Spain). Before and after each dissection, a computed tomography (CT) scan was performed to create a three-dimensional geometric model of the approach performed in the dissection room. The model protocol was designed as follows: (i) a preliminary exploration of each specimen using the preoperative CT scan, (ii) creation of a computer-generated three-dimensional virtual model of the approach, (iii) cadaveric anatomic dissection, and (iv) development of a CT-based model of the approach as a result of the superimposition of predissection and postdissection digital imaging and communications in medicine (DICOM) images of specimens.
Results: This method employing preliminary virtual exploration of each specimen, the creation of a three-dimensional virtual model of the approach, and the overlapping of the predissection and postdissection three-dimensional models was useful to define the exact boundaries of the endoscopic endonasal craniectomy.
Conclusions: Aside from laboratory anatomic dissection itself, this model is very effective in providing a depiction of bony landmarks and visual feedback of the amount of bone removed, improving the design of the craniectomy in the endoscopic endonasal midline skull base approach.
Copyright © 2011 Elsevier Inc. All rights reserved.