Purpose: To provide a quantitative assessment of motion and distortion correction of diffusion-weighted images (DWIs) of the breast and to evaluate the effects of registration on the mean apparent diffusion coefficient (mADC).
Materials and methods: Eight datasets from four patients with breast cancer and eight datasets from six healthy controls were acquired on a 3T scanner. A 3D affine registration was used to align each set of images and principal component analysis was used to assess the results. Variance in tumor ADC measurements, tumor mADC values, and voxel-wise tumor mADC values were compared before and after registration for each patient.
Results: Image registration significantly (P = 0.008) improved image alignment for both groups and significantly (P < 0.001) reduced the variance across individual tumor ADC measurements. While misalignment led to potential under- and overestimation of mADC values for individual voxels, average tumor mADC values did not significantly change (P > 0.09) after registration.
Conclusion: 3D affine registration improved the alignment of DWIs of the breast and reduced the variance between ADC measurements. Although the reduced variance did not significantly change tumor region-of-interest measures of mADC, it may have a significant impact on voxel-based analyses.
Copyright © 2011 Wiley-Liss, Inc.