The electrodes with the hierarchical nanoarchitectures could offer a huge increase in energy storage capacity. However, the ability to achieve such hierarchical architectures on a multiple scale still has remained a great challenge. In this paper, we report a scalable self-assembly strategy to create bioinspired hierarchical structures composed of functionalized graphene sheets to work as anodes of lithium-ion batteries. The resulting electrodes with novel multilevel architectures simultaneously optimize ion transport and capacity, leading to a high performance of reversible capacity of up to 1600 mAh/g, and 1150 mAh/g after 50 cycles. Importantly, the process to fabricate such hierarchical structures is facile, low-cost, green, and scalable, providing a universal approach for the rational design and engineering of electrode materials with enhanced performance, and it may have utility in various applications, including biological scaffold, catalysis, and sensors.