Purpose: To investigate the activity and myeloprotective properties of erufosine, a novel alkylphosphocholine (APC), on human malignant cells and normal bone marrow cells.
Methods: Human or mouse bone marrow cells were exposed to erufosine, miltefosine, perifosine, or edelfosine in CFU-GM assays. Human MDA-MB-231 breast carcinoma, Panc-1 pancreatic carcinoma, and RPMI8226 multiple myeloma cells were exposed to erufosine in colony formation assays. Colony formation of Panc-1 tumor cells and mouse bone marrow cells ex vivo were quantified following intravenous administration of erufosine to tumor-bearing mice. Western blotting methods were applied to human U87 glioblastoma cells exposed to erufosine to investigate Akt inhibition.
Results: Erufosine was less toxic to human and mouse bone marrow cells than perifosine, miltefosine, and edelfosine and was equally toxic to human and mouse CFU-GM. The human cancer cells MDA-MB-231 breast, Panc-1 pancreatic, and RPMI8226 MM cells were more sensitive to erufosine in a colony formation assay than were human bone marrow cells generating an approximately tenfold differential in IC(90) values. Erufosine injected intravenously significantly reduced Panc-1 tumor cell colony formation ex vivo but not mouse bone marrow CFU-GM. Erufosine inhibited Akt phosphorylation in human U87 glioblastoma cells.
Conclusions: Erufosine offers potential as a novel therapeutic for cancer with a reduced toxicity profile to bone marrow cells compared with other agents in this class. Human cancer cells were more sensitive to erufosine than human or mouse bone marrow cells indicating a favorable therapeutic window for erufosine.