Genetic studies have linked both osteoporotic and high bone mass phenotypes to low-density lipoprotein receptor-related proteins (LRP4, LRP5, and LRP6). LRPs are receptors for inhibitory Dickkopf-1 (DKK1) protein, and treatment modalities that modulate LRP/DKK1 binding therefore may act as stimulators of bone mass accrual. Here, we report that RH2-18, a fully human monoclonal anti-DKK1 antibody elicits systemic pharmacologic bone efficacy and new bone formation at endosteal bone surfaces in vivo in a mouse model of estrogen-deficiency-induced osteopenia. This was paralleled by partial-to-complete resolution of osteopenia (bone mineral density) at all of the skeletal sites investigated in femur and lumbar-vertebral bodies and the restoration of trabecular bone microarchitecture. More importantly, testing of RH2-18 in adult, osteopenic rhesus macaques demonstrated a rate-limiting role of DKK1 at multiple skeletal sites and responsiveness to treatment. In conclusion, this study provides pharmacologic evidence for the modulation of DKK1 bioactivity in the adult osteopenic skeleton as a viable approach to resolve osteopenia in animal models. Thus, data described here suggest that targeting DKK1 through means such as a fully human anti-DKK1-antibody provides a potential bone-anabolic treatment for postmenopausal osteoporosis.