Early growth response gene 1 regulates bone properties in mice

Calcif Tissue Int. 2011 Jul;89(1):1-9. doi: 10.1007/s00223-011-9486-0. Epub 2011 May 2.

Abstract

Transcriptional regulation of the postnatal skeleton is incompletely understood. Here, we determined the consequence of loss of early growth response gene 1 (EGR-1) on bone properties. Analyses were performed on both the microscopic and molecular levels utilizing micro-computed tomography (micro-CT) and Fourier transform infrared imaging (FTIRI), respectively. Mice deficient in EGR-1 (Egr-1 (-/-)) were studied and compared to sex- and age-matched wild-type (wt) control animals. Femoral trabecular bone in male Egr-1 (-/-) mice demonstrated osteopenic characteristics marked by reductions in both bone volume fraction (BV/TV) and bone mineral density (BMD). Morphological analysis revealed fewer trabeculae in these animals. In contrast, female Egr-1 (-/-) animals had thinner trabeculae, but BV/TV and BMD were not significantly reduced. Analysis of femoral cortical bone at the mid-diaphysis did not show significant osteopenic characteristics but detected changes in cross-sectional geometry in both male and female Egr-1 (-/-) animals. Functionally, this resulted in decreased resistance to three-point bending as indicated by a reduction in maximum load, failure load, and stiffness. Assessment of compositional bone properties, including mineral-to-matrix ratio, carbonate-to-phosphate ratio, crystallinity, and cross-linking, in femurs by FTIRI did not show any significant differences or an appreciable trend between Egr-1 (-/-) and wt mice of either sex. Unexpectedly, rib bone from Egr-1 (-/-) animals displayed distinct osteopenic traits that were particularly pronounced in female mice. This study provides genetic evidence that both sex and skeletal site are critical determinants of EGR-1 activity in vivo and that its site-specific action may contribute to the mechanical properties of bone.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bone Density / genetics
  • Bone Density / physiology
  • Bone and Bones / chemistry
  • Bone and Bones / diagnostic imaging*
  • Early Growth Response Protein 1 / genetics*
  • Early Growth Response Protein 1 / metabolism
  • Female
  • Male
  • Mice
  • Mice, Transgenic
  • Tomography, X-Ray Computed

Substances

  • Early Growth Response Protein 1