Despite many studies on the phylogeny of the subgenus Sophophora, its monophyly has not been established, especially in relation to its putative relative, the genus Lordiphosa. We analyzed their phylogenetic relationships using DNA sequence data of two mitochondrial genes (ND2 and COII) and two nuclear genes (Adh and 28SrRNA). In constructing phylogenetic trees, we accounted for the problem of among-taxa nucleotide compositional heterogeneity, and took a sequence-partitioning approach to allow multiple substitution models for nucleotide sequences that have evolved under different evolutionary processes, particularly developing a novel, sequence-partitioning procedure for Neighbor Joining (NJ) tree construction. Trees constructed by different methods showed an almost identical and strongly supported topology in which Sophophora was paraphyletic: Lordiphosa was placed as the sister to the Neotropical Sophophora consisting of the saltans and willistoni groups, and Sophophora was divided into the clade of Lordiphosa+Neotropical Sophophora and the clade of the obscura+melanogaster groups. Based on the estimated time, 45.9 Mya, of divergence between the Old World Lordiphosa and the Neotropical Sophophora and evidence from paleontology, paleo-geography and -climatology, we propose a hypothesis that this vicariant divergence should have occurred when the North Atlantic Land Bridge between Europe and North America broke in the middle Eocene Epoch.
Copyright © 2011 Elsevier Inc. All rights reserved.