Inorganic/organic nanocomposite counter electrodes comprised of sheetlike CoS nanoparticles dispersed in polystyrenesulfonate-doped poly(3,4-ethylenedioxythiophene (CoS/PEDOT:PSS) offer a synergistic effect on catalytic performance toward the reduction of triiodide for dye-sensitized solar cells (DSSCs), yielding 5.4% power conversion efficiency, which is comparable to that of the conventional platinum counter electrode (6.1%). The electrochemical impedance spectroscopy (EIS) and cyclic voltammetry measurements revealed that the composite counter electrodes exhibited better catalytic activity, fostering rate of triiodide reduction, than that of pristine PEDOT: PSS electrode. The simple preparation of composite (CoS/PEDOT:PSS) electrode at low temperature with improved electrocatalytic properties are feasible to apply in flexible substrates, which is at most urgency for developing novel counter electrodes for lightweight flexible solar cells.
© 2011 American Chemical Society