Telomere dysfunction and chromosome instability

Mutat Res. 2012 Feb 1;730(1-2):28-36. doi: 10.1016/j.mrfmmm.2011.04.008. Epub 2011 May 7.

Abstract

The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Chromosomal Instability*
  • DNA Breaks, Double-Stranded
  • Humans
  • Neoplasms / genetics
  • Recombinational DNA Repair
  • Telomerase / metabolism
  • Telomere / genetics*
  • Telomere / metabolism
  • Telomere Shortening*
  • Telomere-Binding Proteins / metabolism
  • Translocation, Genetic

Substances

  • Telomere-Binding Proteins
  • Telomerase