In the solid state, MnF(salen) forms chains wherein fairly linear fluoride bridges between high-spin Mn(III) centers are observed. We interpret the magnetic properties of these chains by use of the classical Fisher model and by use of the high-temperature expansion approach, as well as by exact matrix diagonalization of the spin Hamiltonian, of model rings. In solution, electron paramagnetic resonance shows the chains to be symmetrically cleaved to monomeric MnF(salen).
© 2011 American Chemical Society