Damage to peripheral nerves following trauma or neurodegenerative diseases often results in various sensory and motor abnormalities and chronic neuropathic pain. The loss of neurotrophic factor support has been proposed to contribute to the development of peripheral neuropathy. The main objective of this study was to investigate the protective effect of glial cell line-derived neurotrophic factor (GDNF) using peripheral gene delivery in a rat model of constriction-induced peripheral nerve injury. In this study, it was shown that mechanical and thermal hypersensitivity increased on the injured limb at day 7 after chronic constrictive injury (CCI) was induced. The neurological changes were correlated with the structural changes and loss of GDNF/Akt signaling, particularly in the distal stump of the injured sciatic nerve. Subsequently, recombinant adenovirus was employed to evaluate the potential of intramuscular GDNF gene delivery to alleviate the CCI-induced nerve degeneration ad neuropathic pain. After CCI for 3 days, intramuscular injection of adenovirus encoding GDNF (Ad-GDNF) restored the protein level and activity of GDNF/Akt signaling pathway in the sciatic nerve. This was associated with an improved myelination profile and behavioral outcomes in animals with CCI. In conclusion, the present study demonstrates the involvement of GDNF loss in the pathogenesis of CCI-induced neuropathic pain and the therapeutic potential of intramuscular GDNF gene delivery for the treatment of peripheral nerve degeneration.