The cost-effective self-assembly of 80 nm Au nanoparticles (NPs) into large-domain, hexagonally close-packed arrays for high-sensitivity and high-fidelity surface-enhanced Raman spectroscopy (SERS) is demonstrated. These arrays exhibit specific optical resonances due to strong interparticle coupling, which are well reproduced by finite-difference time-domain (FDTD) simulations. The gaps between NPs form a regular lattice of hot spots that enable a large amplification of both photoluminescence and Raman signals. At smaller wavelengths the hot spots are extended away from the minimum-gap positions, which allows SERS of larger analytes that do not fit into small gaps. Using CdSe quantum dots (QDs) a 3-5 times larger photoluminescence enhancement than previously reported is experimentally demonstrated and an unambiguous estimate of the electromagnetic SERS enhancement factor of ≈10(4) is obtained by direct scanning electron microscopy imaging of QDs responsible for the Raman signal. Much stronger enhancement of ≈10(8) is obtained at larger wavelengths for benzenethiol molecules penetrating the NP gaps.
Keywords: Raman spectroscopy; gold nanoparticles; photoluminescence; quantum dots; self-assembly.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.