Background: Prednisolone and other glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive drugs. However, prolonged use at a medium or high dose is hampered by side effects of which the metabolic side effects are most evident. Relatively little is known about their effect on gene-expression in vivo, the effect on cell subpopulations and the relation to the efficacy and side effects of GCs.
Aim: To identify and compare prednisolone-induced gene signatures in CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers and to link these signatures to underlying biological pathways involved in metabolic adverse effects.
Materials & methods: Whole-genome expression profiling was performed on CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers treated with prednisolone. Text-mining analyses was used to link genes to pathways involved in metabolic adverse events.
Results: Induction of gene-expression was much stronger in CD4⁺ T lymphocytes than in CD14⁺ monocytes with respect to fold changes, but the number of truly cell-specific genes where a strong prednisolone effect in one cell type was accompanied by a total lack of prednisolone effect in the other cell type, was relatively low. Subsequently, a large set of genes was identified with a strong link to metabolic processes, for some of which the association with GCs is novel.
Conclusion: The identified gene signatures provide new starting points for further study into GC-induced transcriptional regulation in vivo and the mechanisms underlying GC-mediated metabolic side effects.
Trial registration: ClinicalTrials.gov NCT00971724.