Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana

Plant Cell. 2011 Jun;23(6):2184-95. doi: 10.1105/tpc.111.086355. Epub 2011 Jun 3.

Abstract

Plants integrate different regulatory signals to control their growth and development. Although a number of physiological observations suggest that there is crosstalk between the phytohormone gibberellin (GA) and auxin, as well as with auxin transport, the molecular basis for this hormonal crosstalk remains largely unexplained. Here, we show that auxin transport is reduced in the inflorescences of Arabidopsis thaliana mutants deficient in GA biosynthesis and signaling. We further show that this reduced auxin transport correlates with a reduction in the abundance of PIN-FORMED (PIN) auxin efflux facilitators in GA-deficient plants and that PIN protein levels recover to wild-type levels following GA treatment. We also demonstrate that the regulation of PIN protein levels cannot be explained by a transcriptional regulation of the PIN genes but that GA deficiency promotes, at least in the case of PIN2, the targeting of PIN proteins for vacuolar degradation. In genetic studies, we reveal that the reduced auxin transport of GA mutants correlates with an impairment in two PIN-dependent growth processes, namely, cotyledon differentiation and root gravitropic responses. Our study thus presents evidence for a role of GA in these growth responses and for a GA-dependent modulation of PIN turnover that may be causative for these differential growth responses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / anatomy & histology
  • Arabidopsis / genetics
  • Arabidopsis / growth & development*
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Biological Transport
  • Cotyledon / growth & development
  • Cotyledon / physiology
  • Gene Expression Regulation, Plant
  • Gibberellins / metabolism*
  • Gravitropism / physiology
  • Indoleacetic Acids / metabolism*
  • Membrane Transport Proteins / genetics
  • Membrane Transport Proteins / metabolism*
  • Molecular Sequence Data
  • Plant Growth Regulators / metabolism
  • Plant Roots / anatomy & histology
  • Plant Roots / physiology
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Signal Transduction / physiology
  • Transcription, Genetic
  • Vacuoles / metabolism

Substances

  • AUX1 protein, Arabidopsis
  • Arabidopsis Proteins
  • Gibberellins
  • Indoleacetic Acids
  • Membrane Transport Proteins
  • PIN1 protein, Arabidopsis
  • PIN2 protein, Arabidopsis
  • PIN3 protein, Arabidopsis
  • Plant Growth Regulators
  • Recombinant Fusion Proteins