Effects of serum amyloid a and lysophosphatidylcholine on intracellular calcium concentration in human coronary artery smooth muscle cells

Int Heart J. 2011;52(3):185-93. doi: 10.1536/ihj.52.185.

Abstract

Serum amyloid A (SAA), an acute-phase protein, and lysophosphatidylcholine (LPC), an oxidized LDL component, contribute to the physiological processes of atherosclerosis and cardiovascular disease. However, the effects of SAA/LPC on human coronary artery smooth muscle cells (hCASMCs) have not been fully investigated. Therefore, we examined the effects of SAA/LPC on Ca(2+)/Mg(2+) mobilization and its underlying mechanisms in hCASMCs. Intracellular Ca(2+)/Mg(2+) concentration ([Ca(2+)](i) / [Mg(2+)](i)) was measured with fura-2 AM/mag-fura-2 AM. Conventional RT-PCR analysis was also performed. Both SAA and LPC increased [Ca(2+)](i) by Ca(2+) entry. The SAA-induced Ca(2+) entry was inhibited by Gd(3+), SKF96365, and 2-aminoethoxydiphenyl borate (2-APB), a nonselective transient receptor potential (TRP) channel blocker, but not nifedipine. The LPC-induced Ca(2+) entry was blocked by Gd(3+), but not nifedipine, SKF96365 and 2-APB. U-73122 and PTX prevented the activation of SAA-, but not LPC-induced Ca(2+) influx. LPC, but not SAA, increased [Mg(2+)](i) as well as [Ca(2+)](i). The RT-PCR analysis revealed the expression of TRPC1/4, TRPV1/2/4, and TRPM7/8 mRNA. These results suggest that SAA/LPC activate Ca(2+) influx in hCASMCs; SAA activates it via PTX-sensitive G-protein, PLC and TRPC pathways, while LPC activates it independently of these pathways, where TRPM7 may be partly involved. Thus, TRP protein appears to be a target molecule of Ca(2+) signaling in hCASMCs elicited by SAA/LPC, which may play roles in coronary muscle dysfunction under pathophysiological and inflammatory conditions such as atherosclerosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium / metabolism*
  • Calcium Channel Blockers / pharmacology
  • Cells, Cultured
  • Coronary Vessels / metabolism*
  • Dose-Response Relationship, Drug
  • Estrenes / pharmacology
  • Humans
  • Lysophosphatidylcholines / metabolism*
  • Lysophosphatidylcholines / pharmacology*
  • Magnesium / metabolism
  • Myocytes, Smooth Muscle / metabolism*
  • Pertussis Toxin / pharmacology
  • Pyrrolidinones / pharmacology
  • Reverse Transcriptase Polymerase Chain Reaction
  • Serum Amyloid A Protein / metabolism*
  • Serum Amyloid A Protein / pharmacology*
  • TRPC Cation Channels / metabolism

Substances

  • Calcium Channel Blockers
  • Estrenes
  • Lysophosphatidylcholines
  • Pyrrolidinones
  • Serum Amyloid A Protein
  • TRPC Cation Channels
  • 1-(6-((3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione
  • Pertussis Toxin
  • Magnesium
  • Calcium