Patients with psychosis often exhibit abnormalities in basic motor control, but little is known about the neural basis of these deficits. This study examines the neuro-dynamics of movement using magnetoencephalography (MEG) in adolescents with early-onset psychosis and typically developing controls. MEG data were imaged using beamforming then evaluated for task and group effects before, during, and after movement onsets. Primary findings included weaker activation in patients during movement execution in cerebellar cortices. Such aberrations likely contribute to the decreased motor control exhibited by patients with psychosis, and may reflect GABAergic-based inhibitory deficits comparable to those seen in cellular and system-level studies.