Microwave-assisted optimized transglycosylation reactions were used to prepare eleven modified l-3'-azido-2',3'-dideoxypurine nucleosides. These l-nucleoside analogs were evaluated against HIV and hepatitis B virus. The l-3'-azido-2',3'-dideoxypurines nucleosides were metabolized to nucleoside 5'-triphosphates in primary human lymphocytes, but exhibited weak or no antiviral activity against HIV-1. The nucleosides were also inactive against HBV in HepG2 cells. Pre-steady state kinetic experiments demonstrated that the l-3'-azido-2',3'-dideoxypurine triphosphates could be incorporated by purified HIV-1 reverse transcriptase, although their catalytic efficiency (k(pol)/K(d)) of incorporation was low. Interestingly, a phosphoramidate prodrug of l-3'-azido-2',3'-dideoxyadenosine exhibited anti-HIV-1 activity without significant toxicity.
Published by Elsevier Masson SAS.