Reference-free particle selection enhanced with semi-supervised machine learning for cryo-electron microscopy

J Struct Biol. 2011 Sep;175(3):353-61. doi: 10.1016/j.jsb.2011.06.004. Epub 2011 Jun 17.

Abstract

Reference-based methods have dominated the approaches to the particle selection problem, proving fast, and accurate on even the most challenging micrographs. A reference volume, however, is not always available and compiling a set of reference projections from the micrographs themselves requires significant effort to attain the same level of accuracy. We propose a reference-free method to quickly extract particles from the micrograph. The method is augmented with a new semi-supervised machine-learning algorithm to accurately discriminate particles from contaminants and noise.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Artificial Intelligence*
  • Cryoelectron Microscopy / methods*