In the previous paper, we reported the identification of a 74-kDa G-protein that co-purifies with the alpha 1-adrenergic receptor following ternary complex formation. We report here on the purification and characterization of this 74-kDa G-protein (termed Gh) isolated de novo from rat liver membranes. After solubilization of rat liver membranes with the detergent sucrose monolaurate, Gh was isolated by sequential chromatography using heparin-agarose, Ultrogel AcA 34, hydroxylapatite, and heptylamine-Sepharose columns. The protein, thus isolated, is not a substrate for cholera or pertussis toxin but displays GTPase activity (turnover number, 3-5 min-1) and high-affinity guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding (half-maximal binding = 0.25-0.3 microM), which is Mg2(+)-dependent and saturable. The relative order of nucleotide binding by Gh is GTP gamma S greater than GTP greater than GDP greater than ITP much much greater than ATP greater than or equal to adenyl-5'-yl imidodiphosphate, which is similar to that observed for other heterotrimeric G-proteins involved in receptor signaling. Moreover, specific alpha 1-agonist-stimulated GTPase (turnover number, 10-15 min-1) and GTP gamma S binding activity could be demonstrated after reconstitution of purified Gh with partially purified alpha 1-adrenergic receptor into phospholipid vesicles. The alpha 1-agonist stimulation of GTP gamma S binding and GTPase activity was inhibited by the alpha-antagonist phentolamine. A 50-kDa protein co-purifies with the 74-kDa G-protein. This protein does not bind guanine nucleotides and may be a subunit (beta-subunit) of Gh. These findings indicate that Gh is a G-protein that functionally couples to the alpha 1-adrenergic receptor.