The recent experimental support for the presence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in CeCoIn(5) directed attention towards the mechanisms responsible for this type of superconductivity. We investigate the FFLO state in a model where on-site/inter-site pairing coexists with the repulsive pair hopping interaction. The latter interaction is interesting in that it leads to pairing with non-zero momentum of the Cooper pairs even in the absence of the external magnetic field (the so-called η pairing). It turns out that, depending on the strength of the pair hopping interaction, the magnetic field can induce one of two types of the FFLO phase with different spatial modulations of the order parameter. It is argued that the properties of the FFLO phase may give information about the magnitude of the pair hopping interaction. We also show that η pairing and d-wave superconductivity may coexist in the FFLO state. It holds true also for superconductors which, in the absence of magnetic field, are of pure d-wave type.