BMI increases progressively from adolescence to young adulthood. The aims of the present study were firstly, to investigate the extent to which genetic and environmental influences account for differences in BMI trajectories during this period, and secondly to examine whether boys and girls show divergences in these influences, as their BMI normally start differing across adolescence. The study sample consisted of 4,915 monozygotic and like- and unlike-sex dizygotic twins, born between 1975 and 1979. Data on BMI was gathered when twins were on average 16.1, 17.1, 18.6 and 24.4 years old. Genetic and environmental influences on the BMI trajectories were modeled using a latent growth curve approach. The results showed that the heritability of BMI decreased slightly after the adolescence period, from ≈ 80 to 70%. BMI transition from adolescence to young adulthood was best described by a quadratic trajectory that was highly accounted (61.7-86.5%) for by additive genetic influences. Genetic influences on BMI level showed a low correlation with those on the trend in BMI with age indicating that different sets of genes underlie the change of BMI during this period. Importantly, the analyses also evidenced that different genetic and environmental influences may underlie boys and girls evolution. In conclusion, our results suggested specific genetic influences accounting for the BMI rate-of-change from adolescence to young adulthood. This indicates that the specific genes behind BMI level may not be the same as the genes affecting BMI change which should be taken into account in further efforts to identify these genes.