Massive weight loss-induced mechanical plasticity in obese gait

J Appl Physiol (1985). 2011 Nov;111(5):1391-9. doi: 10.1152/japplphysiol.00291.2011. Epub 2011 Aug 18.

Abstract

We examined the hypothesis that metabolic surgery-induced massive weight loss causes mass-driven and behavioral adaptations in the kinematics and kinetics of obese gait. Gait analyses were performed at three time points over ∼1 yr in initially morbidly obese (mass: 125.7 kg; body mass index: 43.2 kg/m(2)) but otherwise healthy adults. Ten obese adults lost 27.1% ± 5.1 (34.0 ± 9.4 kg) weight by the first follow-up at 7.0 mo (±0.7) and 6.5 ± 4.2% (8.2 ± 6.0 kg) more by the second follow-up at 12.8 mo (±0.9), with a total weight loss of 33.6 ± 8.1% (42.2 ± 14.1 kg; P = 0.001). Subjects walked at a self-selected and a standard 1.5 m/s speed at the three time points and were also compared with an age- and gender-matched comparison group at the second follow-up. Weight loss increased swing time, stride length, gait speed, hip range of motion, maximal knee flexion, and ankle plantarflexion. Weight loss of 27% led to 3.9% increase in gait speed. An additional 6.5% weight loss led to an additional 7.3% increase in gait speed. Sagittal plane normalized knee torque increased and absolute ankle and frontal plane knee torques decreased after weight loss. We conclude that large weight loss produced mechanical plasticity by modifying ankle and knee torques and gait behavior. There may be a weight loss threshold of 30 kg limiting changes in gait kinematics. Implications for exercise prescription are also discussed.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Ankle Joint / physiopathology
  • Biomechanical Phenomena
  • Exercise Test / methods
  • Follow-Up Studies
  • Gait / physiology*
  • Hip Joint / physiopathology
  • Humans
  • Kinetics
  • Knee Joint / physiopathology
  • Obesity, Morbid / physiopathology*
  • Torque
  • Walking / physiology
  • Weight Loss / physiology*