N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery

Small. 2011 Oct 4;7(19):2742-9. doi: 10.1002/smll.201100825. Epub 2011 Aug 22.

Abstract

Small-interfering RNA (siRNA) is an emerging class of therapeutics, which works by regulating the expression of a specific gene involved in disease progression. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. In this study, a nonviral nanoparticle gene carrier is developed and its efficiency for siRNA delivery and transfection is validated at both in vitro and in vivo levels. Such a nanocarrier, abbreviated as Alkyl-PEI2k-IO, was constructed with a core of iron oxide nanoparticles (IOs) and a shell of alkylated polyethyleneimine of 2000 Da [corrected] molecualr weight (Alkyl-PEI2k). It is found to be able to bind with siRNA, resulting in well-dispersed nanoparticles with a controlled clustering structure and narrow size distribution. Electrophoresis studies show that the Alkyl-PEI2k-IOs could retard siRNA completely at N:P ratios (i.e., PEI nitrogen to nucleic acid phosphate) above 10, protect siRNA from enzymatic degradation in serum, and release complexed siRNA efficiently in the presence of polyanionic heparin. The knockdown efficiency of the siRNA-loaded nanocarriers is assessed with 4T1 cells stably expressing luciferase (fluc-4T1) and further, with a fluc-4T1 xenograft model. Significant down-regulation of luciferase is observed, and unlike high-molecular-weight analogues, the Alkyl-PEI2k-coated IOs show good biocompatibility. In conclusion, Alkyl-PEI2k-IOs demonstrate highly efficient delivery of siRNA and an innocuous toxic profile, making it a potential carrier for gene therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Death
  • Cell Line, Tumor
  • Electrophoresis, Agar Gel
  • Ferric Compounds / chemistry*
  • Gene Transfer Techniques*
  • Intracellular Space / metabolism
  • Luciferases, Firefly / metabolism
  • Magnetic Resonance Spectroscopy
  • Mice
  • Nanoparticles / chemistry*
  • Phantoms, Imaging
  • Polyethyleneimine / analogs & derivatives*
  • Polyethyleneimine / chemistry
  • RNA, Small Interfering / metabolism*

Substances

  • Ferric Compounds
  • RNA, Small Interfering
  • ferric oxide
  • Polyethyleneimine
  • Luciferases, Firefly