The behavior of nodal support and stability in the presence of long branches were examined under simulations and an analysis of real data. Relatively short branches were typically correctly resolved, received high bootstrap support, and were stable in sensitivity analyses. Longer branches received lower support and stability measures, and were often incorrectly resolved due to the long-branch attraction. Support and stability does not always correlate, and in the case of mammalian mitochondrial tree, well supported but unstable nodes were typically associated with long-branch attraction. Very long branches, on the other hand, may be incorrectly resolved with high support and stability indices. These patterns were observed both in simulations, and in the real data. The results indicate that sensitivity analysis may help to reveal phylogenetic uncertainty hidden behind artificially high support.
Copyright © 2011 Elsevier Inc. All rights reserved.