Background: We previously designed the boron tracedrugs UTX-42, UTX-43, and UTX-44, which possess antioxidant potency. In order to explore their destructive dynamic effects when bombarded by weak thermal neutrons, we performed thermal neutron irradiation of bovine serum albumin (BSA) treated with the boron tracedrugs.
Materials and methods: Boron tracedrugs, including the boron dipyrromethene (BODIPY)-containing compounds UTX-42, UTX-44, and UTX-47 and the curcuminoid compounds UTX-50 and UTX-51, were designed for neutron dynamic therapy based on their molecular orbital calculation. Newly designed UTX-47, UTX-50, and UTX-51 were synthesized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to detect decomposition by thermal neutron irradiation of BSA treated with these boron tracedrugs.
Results: The combination of 1.0 μM BSA with 100 μM of each of the boron tracedrugs showed a decrease in band intensity after irradiation.
Conclusion: All boron tracedrugs tested caused destructive dynamic damage of BSA during thermal neutron irradiation, suggesting that boron tracedrugs could be used as dynamic drugs for neutron dynamic therapy.