Thrombotic disorders such as myocardial infarction and stroke are the leading causes of death and disability in industrialized nations. Timely institution of thrombolytic therapy can achieve a reduction of infarct size, a preservation of left ventricular function, and a reduction in mortality. The administration of streptokinase, urokinase, and acylated plasminogen-streptokinase activator complex (APSAC) can be associated with a complete breakdown of the hemostatic system. Tissue-type plasminogen activator (t-PA) and single-chain urokinase-type plasminogen activator (scu-PA, prourokinase) are more fibrin specific; however, at the large dosages of activator needed for therapeutic efficacy, bleeding complications are still a problem. New approaches to optimizing the risk/benefit ratio for the patient by improving efficacy without sacrificing specificity include the use of synergistic combinations of plasminogen activators, mutants of t-PA and scu-PA, chimeric molecules, and antibody-targeted thrombolytic agents. The last approach opens the possibility of targeting several different components of the clot with either fibrinolytic or antiplatelet effector functions in one optimized molecule.