Exploring protein superstructures and dynamics in live bacterial cells using single-molecule and superresolution imaging

Methods Mol Biol. 2011:783:139-58. doi: 10.1007/978-1-61779-282-3_8.

Abstract

Single-molecule imaging enables biophysical measurements devoid of ensemble averaging, gives enhanced spatial resolution beyond the optical diffraction limit, and enables superresolution reconstruction of structures beyond the diffraction limit. This work summarizes how single-molecule and superresolution imaging can be applied to the study of protein dynamics and superstructures in live Caulobacter crescentus cells to illustrate the power of these methods in bacterial imaging. Based on these techniques, the diffusion coefficient and dynamics of the histidine protein kinase PleC, the localization behavior of the polar protein PopZ, and the treadmilling behavior and protein superstructure of the structural protein MreB are investigated with sub-40-nm spatial resolution, all in live cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / metabolism*
  • Caulobacter crescentus / metabolism*
  • Models, Theoretical
  • Molecular Imaging / methods*

Substances

  • Bacterial Proteins