Imaging the high-affinity state of the dopamine D2 receptor in vivo: fact or fiction?

Biochem Pharmacol. 2012 Jan 15;83(2):193-8. doi: 10.1016/j.bcp.2011.09.008. Epub 2011 Sep 16.

Abstract

Positron Emission Tomography (PET) has been used for more than three decades to image and quantify dopamine D2 receptors (D2R) in vivo with antagonist radioligands but in the recent years agonist radioligands have also been employed. In vitro competition studies have demonstrated that agonists bind to both a high and a low-affinity state of the D2Rs, of which the high affinity state reflects receptors that are coupled to G-proteins and the low-affinity state reflects receptors uncoupled from G-proteins. In contrast, antagonists bind with uniform affinity to the total pool of receptors. Results of these studies led to the proposal that D2Rs exist in high and low-affinity states for agonists in vivo and sparked the development and use of agonist radioligands for PET imaging with the primary purpose of measuring the proportion of receptors in the high-affinity (activating) state. Although several lines of research support the presence of high and low-affinity states of D2Rs and their detection by in vivo imaging paradigms, a growing body of controversial data has now called this into question. These include both in vivo and ex vivo studies of anesthesia effects, rodent models with increased proportions of high-affinity state D2Rs as well as the molecular evidence for stable receptor-G-protein complexes. In this commentary we review these data and discuss the evidence for the in vivo existence of D2Rs configured in high and low-affinity states and whether or not the high-affinity state of the D2R can, in fact, be imaged in vivo with agonist radioligands.

Publication types

  • Review

MeSH terms

  • Animals
  • Dopamine Agonists / chemistry
  • Dopamine Agonists / metabolism
  • Humans
  • Positron-Emission Tomography* / methods
  • Protein Binding / physiology
  • Radioligand Assay / methods
  • Receptors, Dopamine D2 / chemistry*
  • Receptors, Dopamine D2 / metabolism*

Substances

  • Dopamine Agonists
  • Receptors, Dopamine D2