Extended utility of molten-salt chemistry: unprecedented synthesis of a water-soluble salt-inclusion solid comprised of high-nuclearity vanadium oxide clusters

Inorg Chem. 2011 Nov 7;50(21):11064-8. doi: 10.1021/ic201605w. Epub 2011 Sep 27.

Abstract

Polyoxometallates (POMs) are desirable in materials applications ranging from uses as catalysts in selective oxidation reactions to molecular-like building blocks for the preparation of new extended solids. With the use of an unprecedented approach involving high temperature, molten salt methods, a fascinating series of salt-inclusion solids (SISs) that contain high nuclearity POMs has been isolated for the first time. Cs(11)Na(3)(V(15)O(36))Cl(6) (1) was synthesized using the eutectic NaCl/CsCl flux (mp 493 °C) which serves as a reactive solvent in crystal growth and allows for the SIS formation. Its framework can be viewed as an "ionic" lattice composed of alternately packed counterions of Cl-centered [V(15)O(36)Cl](9-) clusters (V15; S = 11/2) and multinuclear [Cs(9)Na(3)Cl(5)](7+) cations. In light of the structural analysis, 1 was proven to be soluble in water giving rise to a dark green solution that is similar in color to single crystals of the title compound. Infrared spectroscopy of the solid formed from fast evaporation of the solution supports the presence of dissolved V15 clusters. Also noteworthy is the magnetization of 1 at 2 K, which reveals an s-shaped plot resembling that of superparamagnetic materials.