Few data are available on the effective dose received by participants in lung cancer screening programmes with low-dose CT (LDCT). We report the collective effective dose delivered to 1406 current or former smokers enrolled in the ITALUNG trial who completed 4 annual LDCT examinations and related further investigations including follow-up LDCT, 2-[(18)F]flu-2-deoxy-d-glucose positron emission tomography (FDG-PET) or CT-guided fine needle aspiration biopsy (FNAB). Using the air CT dose index and Monte Carlo simulations on an anthropomorphic phantom, the whole-body effective dose associated with LDCT was determined for the eight CT scanners used in the trial. A value of 7 mSv was assigned to FDG-PET while the measured mean effective dose of CT-guided FNAB was 1.5 mSv. The mean collective effective dose in the 1406 subjects ranged between 8.75 and 9.36 Sv and the mean effective dose to the single subject over 4 years was between 6.2 and 6.8 mSv (range 1.7-21.5 mSv) according to the cranial-caudal length of the LDCT volume. 77.4% of the dose was owing to annual LDCT and 22.6% to further investigations. Considering the nominal risk coefficients for stochastic effects after exposure to low-dose radiation according to the National Radiological Protection Board, International Commission on Radiological Protection (ICRP) 60, ICRP103 and Biological Effects of Ionizing Radiation VII, the mean number of radiation-induced cancers ranged between 0.12 and 0.33 per 1000 subjects. The individual effective dose to participants in a 4-year lung cancer screening programme with annual LDCT is very low and about one-third of the effective dose that is associated with natural background radiation and diagnostic radiology in the same time period.