Design of a modified mouse protein with ligand binding properties of its human analog by molecular dynamics simulations: the case of C3 inhibition by compstatin

Proteins. 2011 Nov;79(11):3166-79. doi: 10.1002/prot.23149. Epub 2011 Aug 30.

Abstract

The peptide compstatin and its derivatives inhibit the complement-component protein C3 in primate mammals and are potential therapeutic agents against the unregulated activation of complement in humans, but are inactive against C3 from lower mammals. Recent molecular dynamics (MD) simulations showed that the most potent compstatin analog comprised entirely of natural amino acids (W4A9) had a smaller affinity for rat C3, due to reproducible changes in the rat protein structure with respect to the human protein, which eliminated or weakened specific protein-ligand interactions seen in the human C3:W4A9 complex. Here, we study by MD simulations three W4A9 complexes with the mouse C3 protein, and two "transgenic" mouse derivatives, containing a small number (6-9) of human C3 substitutions. The mouse complex experiences the conformational changes and affinity reduction of the rat complex. In the "transgenic" complexes, the conformation remains closer to that of the human complex, the protein-ligand interactions are improved, and the affinity for compstatin becomes "human-like." The present work creates new avenues for a compstatin-sensitive animal model. A similar strategy, involving the comparison of a series of complexes by MD simulations, could be used to design "transgenic" sequences in other systems.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Complement Activation / drug effects
  • Complement C3 / antagonists & inhibitors*
  • Crystallography, X-Ray
  • Humans
  • Ligands
  • Mice
  • Mice, Transgenic
  • Models, Molecular
  • Molecular Dynamics Simulation
  • Peptides / chemistry
  • Peptides, Cyclic / chemistry*
  • Peptides, Cyclic / genetics
  • Peptides, Cyclic / metabolism
  • Protein Binding
  • Protein Conformation
  • Sequence Alignment

Substances

  • Complement C3
  • Ligands
  • Peptides
  • Peptides, Cyclic
  • compstatin