Hematopoietic stem cells (HSCs) are maintained in a specific bone marrow (BM) niche in cavities formed by osteoclasts. Osteoclast-deficient mice are osteopetrotic and exhibit closed BM cavities. Osteoclast activity is inversely correlated with hematopoietic activity; however, how osteoclasts and the BM cavity potentially regulate hematopoiesis is not well understood. To investigate this question, we evaluated hematopoietic activity in three osteopetrotic mouse models: op/op, c-Fos-deficient, and RANKL (receptor activator of nuclear factor kappa B ligand)-deficient mice. We show that, although osteoclasts and, by consequence, BM cavities are absent in these animals, hematopoietic stem and progenitor cell (HSPC) mobilization after granulocyte colony-stimulating factor injection was comparable or even higher in all three lines compared with wild-type mice. In contrast, osteoprotegerin-deficient mice, which have increased numbers of osteoclasts, showed reduced HSPC mobilization. BM-deficient patients and mice reportedly maintain hematopoiesis in extramedullary spaces, such as spleen; however, splenectomized op/op mice did not show reduced HSPC mobilization. Interestingly, we detected an HSC population in osteopetrotic bone of op/op mice, and pharmacological ablation of osteoclasts in wild-type mice did not inhibit, and even increased, HSPC mobilization. These results suggest that osteoclasts are dispensable for HSC mobilization and may function as negative regulators in the hematopoietic system.