"Real-world" comparison of non-invasive imaging to conventional catheter angiography in the diagnosis of cerebral aneurysms

Surg Neurol Int. 2011:2:134. doi: 10.4103/2152-7806.85607. Epub 2011 Sep 30.

Abstract

Background: Based on numerous reports citing high sensitivity and specificity of non-invasive imaging [e.g. computed tomography angiography (CTA) or magnetic resonance angiography (MRA)] in the detection of intracranial aneurysms, it has become increasingly difficult to justify the role of conventional angiography [digital subtraction angiography (DSA)] for diagnostic purposes. The current literature, however, largely fails to demonstrate the practical application of these technologies within the context of a "real-world" neurosurgical practice. We sought to determine the proportion of patients for whom the additional information gleaned from 3D rotational DSA (3DRA) led to a change in treatment.

Methods: We analyzed the medical records of the last 361 consecutive patients referred to a neurosurgeon at our institution for evaluation of "possible intracranial aneurysm" or subarachnoid hemorrhage (SAH). Only those who underwent non-invasive vascular imaging within 3 months prior to DSA were included in the study. For asymptomatic patients without a history of SAH, aneurysms less than 5 mm were followed conservatively. Treatment was advocated for patients with unruptured, non-cavernous aneurysms measuring 5 mm or larger and for any non-cavernous aneurysm in the setting of acute SAH.

Results: For those who underwent CTA or MRA, the treatment plan was changed in 17/90 (18.9%) and 22/73 (30.1%), respectively, based on subsequent information gleaned from DSA. Several reasons exist for the change in the treatment plan, including size and location discrepancies (e.g. cavernous versus supraclinoid), or detection of a benign vascular variant rather than a true aneurysm.

Conclusions: In a "real-world" analysis of intracranial aneurysms, DSA continues to play an important role in determining the optimal management strategy.

Keywords: Aneurysm; angiography; computed tomography angiography; magnetic resonance angiography.