Objective: To analyze the streak artifacts in a gradient-echo echo planar imaging (GE-EPI) sequence and to propose a correction method for the Nyquist ghost artifacts that does not cause streak artifacts in the GE-EPI imaging.
Materials and methods: Several GE-EPI imaging experiments with various reference scans, using both GE-EPI and SE-EPI scan data, were performed to analyze the streak artifacts and to investigate the spin dephasing phenomena of the GE-EPI reference scan. In addition, the analysis based on the spin dephasing was undertaken in order to demonstrate that the SE-EPI reference data can be used for the correction of the GE-EPI main scan data.
Results: The experimental results confirmed that the improvement of the reference data using either signal averaging or a large flip angle cannot guarantee perfect correction of the streak artifact if the noise is not completely removed. Due to the main field inhomogeneity, the spins of the GE-EPI reference data were dephased in multiple echo signals. The proposed correction method, which uses a SE-EPI reference scan for the GE-EPI images, eliminates the N/2 ghost artifacts without producing streak artifacts.
Conclusion: It is believed that the proposed phase error correction scheme can improve the EPI performance in high field MRIs with higher magnetic field inhomogeneities.