Suppressor of cytokine signaling-1 (SOCS1) is a protein that negatively regulates cytokine and growth factor signaling. However, little is known regarding the precise role it plays in idiopathic pulmonary fibrosis. The aim of the present study was to construct a recombinant lentiviral vector for RNA interference targeting the SOCS1 gene and to detect the expression in human alveolar epithelial cells. A lentiviral vector-mediated RNA interference method was used to establish a SOCS1-negative cell line of alveolar origin (A549). Three pairs of complementary small hairpin RNA (shRNA) oligonucleotides targeting the SOCS1 gene were designed, synthesized and inserted into the pPll3.7 vector. Packaged lentivirus particles were obtained after 48 h, and the supernatant was used to transfect the human alveolar epithelial cell line A549. The expression of the SOCS1 protein was detected by Western blotting. MTT assay was used to detect the cell proliferation of alveolar epithelial cells with SOCS1 knockdown. The recombinant plasmids were confirmed by sequencing. The lentivirus-containing supernatant effectively infected the A549 cell line, and the expression of SOCS1 protein was inhibited, which was confirmed by Western blotting in the target cells. MTT assay indicated the inhibition effect for cell proliferation of A549 cells in the SOCS1-RNA interference group, compared to the control group with no interference-mediated silencing of the SOCS1 gene. A lentiviral vector for RNA interference targeting the SOCS1 gene was successfully constructed, and cell survival tests showed that knockdown of the SOCS1 gene promotes the apoptosis of alveolar cells.
Keywords: lentiviral vector; RNA interference; suppressor of cytokine signaling-1; A549 cell line.